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This volume 1s a collection of speeches given at the
"Review Conference concerning Space Flight and Guidance
Theory" held between various divisions of the Marshall
Space Flight Center on February 20, 1962. The conference
had the following objectives:

1. The significance of scientific disciplines in
their contributions to the development of the space flight
and guidance theory is to be shown.

2., For three disciplines, an introduction into the
theory and a description of the present state of development
are to be given. These disciplines are: celestial mechanics,
calculus of variations, and the area of exploilitation of
large-scale computers.

3. The in-house and out-of-house (contracted) efforts
for furthering our present day knowledge of the involved
disciplines are to be discussed. .

4, Results are to be presented that show the imple-
mentation of the theoretical achievements in the guidance
mechanics applied to the Saturn vehicle flights.
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SUMMARY

This volume is a collection of speeches given at the
"Review Conference concerning Space Flight and Guidance
Theory'" held between various divisions of the Marshall
Space Flight Center on February 20, 1962. The conference
had the following objectives:

1. The significance of scientific disciplines in
their contributions to the development of the space flight
and guidance theory is to be shown.

2. For three disciplines, an introduction into the
theory and a description of the present state of development
are to be given. These disciplines are: celestial mechanics,
calculus of variations, and the area of exploitation of
large-scale computers.

3. The in-house and out-of-house (contracted) efforts
for furthering our present day knowledge of the involved
disciplines are to be discussed.

L. Results are to be presented that show the imple-
mentation of the theoretical achievements in the guidance
mechanics applied to the Saturn vehicle flights.



INTRODUCTION

A Functional Perspective of Problems
of Space Flight and Guidance Theory

by
Robert Silber

The following material is intended to present a kind of summary of
the efforts now being expended in and under the supervision of the Future
Projects Branch of the Aeroballistics Division in the area of Aerobal-
listics research, with especial emphasis on the adaptive guidance mode.

One need have only a superficial familiarity with the concept of the
adaptive guidance mode to realize that any investigation involving the
application or extension of the theory must necessarily entail almost
every known discipline involved in the aeroballistics field. Of course,
the same could probably be said for any guidance mode, since guidance
ultimately determines the trajectory history of a given flight, Adap-
tive guidance, however, is broader in that it is conceptually capable
of a continuous redetermination of, in some sense, a best trajectory
history as a function of (a) state variables, (b) performance parameters
and (c) mission criteria.

Because of the complexity of the investigations surrounding adap-
tive guidance, any presentation of the results of these investigations,
if it is to be integrated, is in itself a problem. Some thought has
therefore been devoted to the formulation of a structure within which
particular results assume a relation to a total, rather than appear
as a collection of seemingly disjointed and unrelated facts.

Such a structure is shown by Figure 1. This outline should enable
the reader to perceive the role of a particular investigation in the
overall division function. The diagram has two inputs, Missions and
Aeroballistics Area. These are the two factors which determine the
nature of any investigation undertaken within the Future Projects Branch.
A certain "mission,” in the broad sense, originates, say, in our Washing-
ton Headquarters, At this stage, the mission statement may not be
mathematical, but is more likely to be stated in terms such as: to go
around the moon and return with a specified vehicle in such a way that
certain functions (such as photography) can be performed. Such missions
can generally be construed to fall within one of the four broad categories
listed in the diagram,
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FIGURE 1

For each mission, a certain portion of the necessary analysis may
be considered to fall within the realm of aeroballistics analysis, though
not necessarily exclusively so. It has been found by past experience
that the analysis of missions can be carried out roughly in three steps,
shown in the diagram. The first of these, feasibility studies, concerns
the very first rough analysis to determine whether the combination of
vehicle and mission is feasible or marginal, The mission is then in
some natural way divided into steps, and the physical phenomena of each
are analyzed as to how they may be best performed separately and as to
the problems they pose. In the second step, systems integration, the
pieces must be fitted together to give the total picture, and a best over-
all solution extracted. This necessitates tradeoffs (from the ideal)
in each step to achieve the most desirable integrated approach. Finally,
for the actual execution of the mission, detailed flight performance
data must be generated.

In order to carry out the investigation of the proposed missions,
a certain body of Scientific disciplines is necessary. The nature of




these disciplines, which is intended to be pointed out in Figure 1, is
dependent upon the mission considered and the analysis to be performed.
Listed in the figure are three of the advanced techniques considered
necessary for development of the adaptive guidance mode. These are:

Celestial Mechanics, Calculus of Variations, and Large Computer Exploita-
tion.

The general work scope of the Future Projects Branch may then be
defined as the (direct or indirect) necessary extension of existing
theory and application of theory im the three steps previously described.

This, then, is the structure within which the descriptions that
follow should be viewed. As each discipline and its application is de~
scribed, it will be attempted to show its role relative to the total
branch function and the total development of the adaptive guidance mode,
Any meaningful evaluation as to the necessity of, applicability of and/or
the significance of each investigation must be based on this more com-
prehensive perspective,
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CELESTIAL MECHANICS -~ GENERAL PERTURBATIONS

By
M. C. Davidson

SECTION I. INTRODUCTION

The problem of mission criteria formulation associated
with the adaptive guidance mode becomes difficult when the
mission involves a flight that is strongly affected by
other bodies in the solar system in addition to Earth. The
problem i1s to know what relationships must be satisfied by
the co8rdinates of a vehicle at the termination of powered
flight in order to produce a trajectory satisfying the
mission. Present techniques involve guessing a set of
cobrdinate values at the thrust termination point and step-
wise computing the resulting trajectory. This guess is
then successively improved until the trajectory satisfies
mission requirements. This process of course does not
answer the needs of the adaptive guidance mode. The desired
relationships first mentioned do, however, and are being
investigated now both in-house and by contractors under
the contract, "Guidance and Space Flight Theory."

The problems encountered fall naturally into the field
of celestial mechanics, and in particular, they are usually
contained in the restricted n-body problem. The term
restricted is used when it is understood that the motion of
the mass under investigation, for example, a spacecraft,
does not affect in any way the motion of the remaining masses.

Celestial mechanics is one of the most highly developed
branches of mathematics. Euler, some two hundred years ago,
considered many important problems in the field, (for
example, the problem of two fixed centers and the regtricted
three body problem). The nineteenth century produced mathe-
maticians such as Lagrange, Gauss, Legendre, Welerstrass,
Jacobi, and Poincare’ who contributed greatly to the field.
The body of knowledge continues to grow in the twentieth
century by the investigation of Wintner, Levi-Civita,
Birkhoff, and Siegel, to mention a few. These mathematicians
and others have produced techniques, which make up a large
part of mathematical analysis, designed to solve problems
of celestial mechanics. Even with such concentrated efforts
the general motion in the n-body problem (n > 2) is not
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completely understood. The following is a discussion of
gsome of the techniques applied to the problems of space
travel.

For convenience the discussion of solutions and methods
of solution 1s divided into two types, rigorous analytic
solutions and perturbation techniques. Rigorous analytic
solutions are taken to be those solutions which are mathe-
matically exact in the sense that the variables may be
computed to any desired degree of accuracy. The term
"perturbation" represents the idea of considering the solu-
tion as a deviatlion from a known functional. Thus, we
say the known functional 1s perturbed into the solution of
the problem under investigation. The functional 1s usually
the solution of a closely assoclated problem. A further
division is made in perturbation methods as to their use.

A general perturbation is understood to mean one which
yields an approximation to the solution as an explicit
function, valid for some class of the general solution. 1In
other words, general perturbations are designed to provide
information in the large about some class of orbits. In
contragt to general perturbations, speclal perturbations .
are designed to facilitate the computation of orbits for a
specific set of initial conditions. Such methods usually
employ stepwise integration techniques.

Problens contalned under the general headlngs, (rigorous
analytic solution, general perturbations, and specilal
perturbations), are discussed in that order.

SECTION II. DISCUSSIONS
A. RIGOROUS ANALYTIC SOLUTIONS
1. Euler's Problem of Two Fixed Centers
This problem consists of describing the motion of
a point mass, Pz, under the influence of two other mass
points, P; and Pz, which are fixed in space for all time.

After the proper choice of length and mass, the Lagrangian
function of Ps in a space fixed cartesian system (x;, Xxp) is

where x = x1 + 1 xz2, 1-4 and g are the masses of P; and P»
respectively and |x| means the absolute value of x.
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Let us make the transformation,

x, =y £ + o)y %7 = o2 - 1)(1-¢2), with

g=1-2u .

We find the Lagrangian function L takes the form of Liouville
and the system is soluble by quadratures.

The solution is expressed by the integral equations,

t dt
=\/2 _—
5 J;o na _ ga
d
and s = jfn ! o=
N V(n2-1)(an2+8n+ h1)
/6 dg
£, V(1-£2)(n€2-8Bok+th,)

The total energy h and h, are constants of
integration. We see that the introduced parameter, s, may
be considered the new time variable. This follows from the
fact that n® - £2 is the product of the distances P;Pzand
P,P; and hence a non-negative function. We say s is a real
increasing function of the real time, t.

The integrals in the solution are elliptic integrals;
hence, n and g are elliptic functions of s. It can be shown
that € is an elliptic integral of the third kind in the
coordinates n and €. In order to represent the coordinates
as explicit functions of s, it is necessary to make three
distinctions of orbits. They will be called Class I, Class
II, and Class T1II and may be 1llustrated as follows.
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Class I represents orbits which will be contained
for all time within a single ellipse, 1 = nz.

CILASS T ! n=n,

Class II represents orbits which are contained
within a similar ellipse but are also constrained to lie to
the left of the hyperbola, € = €1, or to the right of the
hyperbola, € = €2, depending upon the initial point.

/ﬂzh

CILASS II

Class III represents orbits which are contained
within the ellipse, n = 7ng, but must lie outside the inner
ellipse, n = n;. The circumlunar orbits will be contained
in Class I.

CLASS IITI

The explicit functional representation of Class I
is
C,+C,sn’w, (s +o,)

C; +sn’ w, (s +¢,)

D, dn w; (s + @) + D, sn w,(s+ ¢,

Dy dn wjy(s+¢,) +snw, (s+¢,)
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We see that the problem of two fixed centers can
be solved exactly although the representation of the solution
is different for Class I, II, and III. The solution of this
problem in three dimensions follows exactly the same line
as that in two dimensions. The importance of this problem
is realized when one considers the possibility of perturbing
thegse solutions into the solution of the restricted three
body problem.

2, Power Series Representation to the Soclution of
. the Three Body Problem

Sundman has shown that the equations of motion for
the three body problem can be regularized; hence, they are
soluble by power series. The time interval for which these
series are valid may be chosen as any desired value. Dr.
Schulz-Arenstorff of Computation Division has shown that
this also applies to the restricted three body problem
(Reference 1). Omitting the details of the method the
solution has the form

x =2 an_wh DY bncnh, and t = > cncnh
n=0 ’ n=0 n=1

The importance of these series is that they in theory
solve the three body problem; however, power series solutions
offer no information in the large on the geometrical behavior
of the orbits. Also, the series is not practical tc use in
the computation of orbits under present day machine capabili-
ties due to their extremely slow rate of convergence.

3. Periodic Orbits in the Planar Three Body Problem

We wish to outline the construction of a family of
perlodic orbits in the restricted three body problem; however,
it should be noted that the method is applicable to the planar
three body problem with no restrictions on the masses. The
existence proof and method of construction 1s due to Siegel
(Reference 2).

In the restricted problem we are to construct periodic
orbits of the infinitesimal point mass, B about the mass
point P, (of mass 4) where the mass points P, (of mass 1 - )
and P, Trevolve in plane circles about their common center
of ma8s. After the proper choice of the unit length, mass,
and time, the differential equation of motion of Pg in the
usual rotating cartesian coordinate system (z,, z,) is
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- . o Z+L Z+u -1
z +212z2 -2 =~ (1-u) i - M
Z+

z+u-1| 2

where z = zZ4 + 1 zZ5.

Let us transform this equation to a coordinate
system whose origin coincides with the point mass P,. The
desired transformation is simply

Z + X = 1 -pu

where x = X4 + 1 Xa. The resulting equation is

3 3
ae . l - — _1 _— -——
X +21x -x = (p-1) [1-(1—::)"2 (1-x) 2 ] -ux2x 2
where X 1s the complex conjugate of x. a
l - -
If the term (u-1) [1 - (1 -x)72 (1 - %) 2]
1s expanded in a power gseries 1n x and X this series will
converge absolute for x|l ¢ 1. Grouping the linear terms
we have
1 - 32
x +21x + 2u-3)x +32p-1)T+px2%x ? =P, X

where P 18 a power series in x and X starting with second
order terms.

Now consider the solution to the first order
differential equations

é=a€: 7.)=—GLT)

with a=2%+ 1 (én)"% and = €, the complex conjugate of

€ . It follows immediately that the product £€n is constant
and further the solution is circular orbits in the (£,, £5)
rectangular coordinate system with € = €, + 1 €,.
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ILet us attempt to represent the solution of the
differential equations in x as a function of £ and .
Further, let this solution take the form
— 2
x=p% (1F2¢5)°% £%(1 + EE% ayy Cxg)

where

6, = €k+2[nk-2[

and £ may take on integers such that 21£) < k.

The existence proof reduces to showing the solubility
for ayxy, (2141 <k, k=1, 2, 3,...), and the convergence
of the series for some positive values of |€|. This is
accomplished by Siegel.

This serles converges quite rapidly and, hence,
lends 1itself to the actual computation of such orbits.

B. GENERAL PERTURBATIONS
1. Hamilton-Jacobi Approach

The particular procedure being considered by
Republic Aviation takes the solution of Euler's problem of
two fixed centers as the base of the solution to the restricted
three body problem. The treatment of Euler's problem i1s to
be the formal Hamilton-Jacobl technique. Let the Hamiltonian
for Euler's problem be :

FZF(X; Y t)
where x is the position defining vector and y is the
momentum vector. Let us define a function s by the equation

F (x, 84, t) + 8, =0

ds
is a vector whose components are — . Let the
aXi

where Sx

solution to this equation be 8 =s (x, a) where @ is an
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introduced vector with constant components. The solution
to Euler's problem is x(t) defined by

Sq = B
where B 1s a vector with constant components. The momentum
y(t) 1s given by

v = 84.

The Hamiltonian for the restricted three body problem
may be written as

H=F+ G,
the Hamiltonian for Euler's problem plus the function G.
Thus, the Hamilton-Jacobi equation becomes

H=F+G+ 8, =G

since F + s¢ = 0. The technique for approximating the
solution of the reduced, equation corresponding to the new
Hamiltonian G is due to Delaunay.

2. Canonical Initial Conditions

. The Hamiltonian for the restricted three body problem
in the usual rotating cartesian coordinate system, (xi, x2) is

H=2(y,2 +52%) -U+ (x2 7, - %4 ¥2)
where

U = il + : , and x =x; + 1 Xp.

lx+u| e+p-1

If we let

F=3(y.°+vy2°) -0
and G =Xz ¥1 - X1 Vo
we have
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" Under such a division of H, the function F is
exactly the Hamiltonian function of Euler's problem of two
fixed centers.

The differential equatiors of motion are produced
by the matrix equation

[ x4 0 0 1 © Hy,
;_ |xe| _ |0 o o 1 Hy
V1 -1 0 0 o0 Hy
Vo [0 -1 o o Hy

or we write simply

z =J Hz'

Let the solution to the differential equations
(of Euler's problem).

w=Jd FW

be w

w (wg, t),

functions of the initial conditions, Wy, and the time, ¢.
Further, let us, within the solution w = w (wg, t), replace
the initial conditions, wy, by the unknown function of

time &y, (k = 1,...,4), and find the differential equation

satisfied by {y such that
z =w (£(t), ).

The result is

¢ =J gx

;o where @* = G (w (&, t)).
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The process of dividing the Hamiltonian 1is again
applied, producing an approximation for {; (t) as

£y = Xz0 8in t + x40 co8 ¢t

la = Xpp0 COS t - X310 8in t

s = (Xa0 + X10) 8in t + (izo - Xpp) COS t

s = (iao + X;0) CO8 t - (X310 - Xz0) 8in t

where (Xi0, X20, X10, Xs0) are the initial conditions in a
rotating coordinate system.

Reference 3 treats the'method in detail.

3. The Parameters of Mean Motion
Iet us consider the system of differentlial equations
X = (Xeens X, @) (k = 1,..., 4)

where the right hand sides are functions of the coordinates
(x4, ... , X4) and the parameter w. The equations of

motion for the restricted three body problem in a rotating
coordinate system may be put into this form. The University
of Kentucky is conducting a study where the parameter is the
mean motion. Consider the solution of these differential
equations to have the form

. b 3
Xk }é% akj (ﬁ ) w

which 1s a power series in w with the coefficients as functions
of the initial point, x)(t=0) = €, and time. The differential

equations for ag,y are

d

EE (ak,j) = bk’J p) (k = 1,---’4 s J =1, 2, 3:---)
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Wwhere

o (XayeeesXe, @) = O by, o _
k ™1 + g kJ s (k=1,..., 4).

Due to the fact that if the mean motion w was

zero, Euler's problem would be produced, the ak, 0
(k=1,...,4) are the coordinates within the Euler problem.
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SECTION I. INTRODUCTION

In the following a brief outline shall be given of the work that Mr.
Tucker of Future Projects Branch and 1 are doing on the numerical com-
putation of orbits, The main object of this work is to get economic
decks of various degrees of accuracy for three types of trajectories:
1, trajectories around one body, especially the earth, 2, trajectories
in the field of two bodies, especially the earth-moon space, and 3.
trajectories in the field of several bodies, i.e.,the solar system.

The N-Body Problem, except for N=2, cannot be solved in a convenient
closed form, apart from a very few special cases. Thus one is more or
less forced to use numerical integration for the actual computation of
orbits, especially if the bodies cannot be considered to be point masses.

SECTION II. DISCUSSIONS

A. TYPES OF DECKS

Jet Propulsion Laboratory furnished Aeroballistics Division with an
accurate and versatile interplanetary deck, which suffices for all pre-
sent purposes and those coming up in the near future; thus there is no
need at this time for the development of an own interplanetary deck. On
the other hand, the decks which we are establishing now are suitable for
the computation of interplanetary trajectories after only minor changes,
although they would not be very convenient.

The computation of trajectories of earth satellites and that of lunar
trajectories pose essentially the same problems; thus, there is no need
to make any distinctions between these in the following.

B. SPECIAL PERTURBATION METHODS

The classical theory of special perturbations - the term ''special
perturbations' used for all methods of numerical integration here -
offers mainly three methods for numerical work: Cowell's method, Encke's
method, and the variation of parameters method. The first two are used
almost exclusively for numerical work, while the equations of the third
method are also a starting point for gerieral perturbation theory, i.e.,
for analytical investigations, In addition, we are also investigating
as a generalization of Encke's method the so-called Varicentric method,
which has been developed in Future Projects Branch in order to overcome
certain difficulties of the older methods,

Cowell's method is the straightforward numerical integration of the
differential equations of motion, which are referred either to bary-
centric coordinates or to one of the bodies (m,).
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BARYCENTRIC COORDINATES COORDINATES REFERRED TO MASS m,
] - ] - - -
- I'-l'u '-'__ r - I’-I’v r‘)
ST e N L (e
Ve |7 -7l r Va1 |7 - "vl3 N
F\,=F\)(t)

This method poses the least problems, but it is also generally the least
accurate or, referred to a fixed accuracy, the slowest of the methods
mentioned here. It should be mentioned that in the astronomical literature
the name '"Cowell's method" is mostly connected with a specific integration
scheme, while the definition given here is that commonly used in astro-
nautics.

Encke's method 1is applicable when the space ship moves in the central
f1e1d of one celestial body (m,) so that the influence of the other
bodies can be considered as a small pertur-
bation. The trajectory ¥ is approximated
piecewise by conic sections P., which are
determined by the central field of my and
by having at a certain time t, the same
initial values as the true trajectory:

o Fy = Tity) = Relts) Ty = Flty) = Telts)

(t) (t) The difference 4r between the true and the
' approximate position, T=r+AF
! is numerically integrated. Introducing
ENCKE'S METHOD . 3
e = "‘t“'or—g‘
;
into the differential equations of motion referred to m,, one gets

T-T T
AF = - ym.( J Z rmy |f - r\oI3 v3

Ty

The main advantages are: 1. the difference A% is usually much smaller
than the true coordinate ? itself, so that the numerical integration

can be performed with less accuracy and therefore faster; 2., certain
terms in the differential equations, which appear as the difference of
two almost equal expressions, can be expanded into fast converging series,
thus increasing accuracy by analytically removing the large parts of the
term and increasing speed of computation by simplifying the term.
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Series expansion with (1 + l)'% =1+ Bu)

-y

ro 1o 2(. ..
- - -r:—s = r—:(lr + I'B(xc)J Xc = ?Urc‘r) + (Af)z)

.I:' Fv iv l - - - 2 -
— o — D — - = - — T
|F - Fvl’ el (r +(r r‘,)B(X\,a Xy 3 [(rr\,) + r']

Varicentric method This is a generalization of Encke's method insofar
as the true trajectory is again approximated by a conic section; but now
the conic section is not referred to

VARICENTRIC METHOD one of the real bodies, as earth or
moon or sun, but to a fictitious body
with both variable mass and position,
The fictitious body m* is chosen so
that its central field approximates
the real field in the neighborhood of
the space ship "as well as possible',
In addition, this fictitious body
shall coincide with the real body in
the special case of a central field,
and it shall be very close - in mass
and position - to a real body if the
space ship moves very close to this real body. This method is intended
to avoid the difficulty of changing the reference body, which is neces-
sary in Encke's method and the variation of parameters method, if the
space ship moves from the neighborhood (i.e., the central field) of one
body to that of another. In the varicentric method the fictitious refer-
ence body moves, generally continuously, from the one real body to the
other one.

Variation of parameters method The differential equations of motion

& ro-
r——rmr?+F
r

-
[}

-grad;R

N 1 (rry)
2 ymy ( + _\’>
v=1

IF-F\,I l‘“3

are transformed to a new set of dependent variables:
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New Variables €,,...,§, by .
r=f(g,,...§,,t) r=g(g,.... 6t

New Differential Equations
gl = hi(gl""’g"t) ] = l,...,ﬁ

These new variables are usually chosen to be constants of the Two-Body
motion} i.e., for the case of the Two-Body problem the solution of the
new differential equations reduces to constants,

Special Set of New Variables : Keplerian Elements
The transformation equations are the
equations of the two-body problem.

a = semimajor axis € = mean longitude at epoch t=0
e = eccentricity mean longitude A=nt + €
= inclination & = longitude of perihelion

N = longitude of ascending node

With these variables the new set of differential equations reads:

2. 2 OR

na 9¢
i, 1-e2(1-f1-e?) 3R _Jfi-e? aR
nale 0t nale dw

na?y1-e? '5€+a:, na?vl-e? sinI an

ig_y_ﬁl_{aa anJ_ i aR

6. 2 R J/T&l(1-/T¢l) R  tanlh 1  aR

na da nale de na f1-e¢2 a1
S - fl-e2 3R , Jtan l/2 I O9R

nale de na’{l-ez dI
n : R

1
na® f-e? sinI I
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C. PERTURBATIVE TERMS

There are no principal difficulties in establishing the equations of
motion, taking into account all major gravitational influences, The
practical question concerning the evaluation of these equations arises:
Which terms of the equations can be simplified or neglected in order to
speed up computation, without giving up the desired accuracy? In our
case of trajectories in the neighborhood of the earth or in the earth-
moon space,we have essentially two sources of gravitational perturba-
tions: first, distant celestial bodies, as sun, planets, and moon or
earth (e.g., in Encke's method the moon (earth) will perturb the motionm,
if the earth (moon) is the reference body); secondly, the oblateness of
the earth or moon,

Oblateness Consider first the perturbations caused by the oblateness of
the earth (the same considerations hold also for the moon). For practical
reasons they are divided into three types: 'coordinate system', ''preces-
sion and nutation", and "equatorial bulge'. They shall be discussed
briefly.

Coordinate system Physically, of course, the choice of the coordinate
system is not considered to introduce perturbations; but in a formal-
mathematical sense, the change to a new coordinate system can introduce
additional terms into the differential equations, which can be considered
formally as perturbations. In this sense the notation should be under-
stood.

The plane of the mean equator of date moves relative to that of the
mean equator of a fixed epoch, the motion being a rotation through about
20" per year. The tabulated coordinates of the celestial bodies are
usually referred to the equatorial (or ecliptical) coordinate system of
a fixed epoch, mainly 1950.0, or to the mean equator (ecliptic) of date.
Assume that we want to compute a trajectory for, say 1970, At this time
the mean equator of date, which is the reference plane for the oblateness
terms, has an inclination of about 7' relative to that of 1950.0, and
the question is: How much does this displacement of the equatorial plane
influence the trajectory? Or, in other words: How much does a trajectory
differ from the true one, if we disregard this motion of the equatorial
plane? Rigorous, but time-consuming solutions are: 1. Compute in the
coordinate system of 1550.,0 and consider the oblateness terms as func-
tions of time; or 2., formulate the equations of motion in an equatorial
coordinate system of date, and transform the coordinates of the celestial
bodies into this system.

Precession _and nutation As mentioned, the equator of date moves relative
to that of a fixed epoch. The secular part of this motion is called pre-
cession, the periodic or almost periodic part is called nutation. The
question, similar to that just discussed, is: Of what type and magnitude
is the error, if we neglect the motion of the equator and consider it
fixed? How long can it be kept fixed without introducing an appreciable
error, a few days or weeks or longer? The answer depends of course on

the trajectory, i.e., how long it remains in the neighborhood of the
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earth., It should be mentioned that the nutation is small, namely, the
nutation in longitude is less than 10", the nutation in obliquity less
than 20",

Equatorial bulge The potential of an oblate body can be represented as
a series of Legendre polynomials, and accordingly one distinguishes
between first, second, third ... harmonics. The practical question aris-
ing here is: Which oblateness terms do influence the trajectory and up
to which distance from the earth for a required accuracy of the computa-
tion?

Celestial bodies The question is quite similar: which bodies of the
solar system (sun, planets) do influence the trajectory so much that
they have to be taken into account and how large is this influence?

D. TWO-BODY PROBLEM

The Two-Body motion is a good approximation teo the true motion in many
cases of celestial mechanics. Furthermore, the solution of the Two-Body
problem is the basis for various perturbation methods: For instance, in
Encke's method a Keplerian conic section is used as an approximation to
the true trajectory, and also the variation of parameters method is based
on the solution of the Two-Body problem. Therefore a complete theory of
the Two-Body problem, that is also satisfactory for numerical purposes,
is important for applications,

The following simple, but not unrealistic example shows clearly that
in certain limiting cases the classical formulas for the Two-Body motion
are unsatisfactory for numerical computations.

Let the conic section be a near parabolic ellipse. Assume that

=1 r= di - T4 1078y . -8
o = . R distance = 2(1 - 10 '® 10 %) ; v

o= velocity = 1 T 10

The semimajor axis a is given by a = T

ryv
2 -5

One easily finds that
rvi=201-10"7 % 31079

and that 1
a5 = 107 =L = 1071 +A)
107 % 3,108 1.3
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such that
.77 107¢ a%1.43 107 ,

Thus, only the order of magnitude of a can be derived from the given
numbers, and it is obvious that the classical formulas

r = a(l - cosE) ; x = a(cosE -~ e) ; y= a Vi - e sinE

can yield only the order of magnitude of the coordinates, even in the
neighborhood of r ’

o.
A brief description of a new set of formulas for the Two-Body motion

follows.
The equations of motion for P and r read:

2 r . 2._;,1 r.

f:-yW — H

L} "

Introduce a new uniformizing variable s by

ss.wfi4(%b,

Then T, r, and t become functions of s, and the
new differential equations read, denoting the

m:=m +m, r:[Fl differentiation with respect to s by a prime,
PeRTeDi0 el t: L
rm
TWO-BODY PROBLEM ;... .
= *
|Dl=e .:.ﬁ:—i
The vector D is directed towards the pericenter of the conic section, if

D+# 0,
Both the equations for T(s) and r(s) are of the simple type

(%) w+Mw+N=0
M and N being constants. = o
Introduce functions Sj(u) by sﬂﬂ=2;(4)-ﬁ3:ﬂr
Then, for instance, $,(): cos & S,(u?) - Sin_8
]
S, (%) zcosh u S,(-u’):s“%

The general solution of (*) can be written as

Initial Values u,, w, "' Wz Wy (U-u,) Sl[M(u-u,)zj - (N+wM)(u-u,) S, [M(u.u.)’]



Applying this result to the differential equations for r(s) and r(s), we
get

Fr F.+}J_—';:l(s-s.)sl [8(s-50)%] - (BT, ) (-4 8, [K*(s - 50)7]

r:r.+}7;—i'_“%(s-s.) S, [W(s-s0)] « (1-ryb)s-s,)'S. [W(s-5,)"]

By simple calculations one finds then general expressions for Kepler's
and Gauss' Equations:

Kepler’'s Equation

g (2-y) = py(ses,) » —"’T—"ﬁt(s-s.)’s,[n*(s-s,)’] o (1 h*)(s-5,)'S, [14s-5,)7 ]

Gauss' Equation

Y (w.v) s LN Sal L4 (s 5y)’] . i
cot /2(\" ‘PQ) s IF (s-.s.)sl [l/4h.*(s_s.)2] —K—L
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SECTION IYI, APPLICATIONS

Various decks using the aforementioned methods have been established
or are being established. The most important of these are listed in the
- following brief survey.

A, TRAJECTORY COMPUTATION DECKS

Deck for earth satellites

Purpose: investigations and applications to actual problems

3-dimensional -- includes oblateness and 3 perturbing point masses

Encke's method -- integration method: Nystrdm -- coded in single
and double precision

Operational with: idealized coordinates of the perturbing bodies
and eccentricity e<1,

Decks for the Restricted Three=Body Problem

Purpose: investigations
2-dimensional -- integration method: Nystr®m -- coded in double

- precision
1.) Cowell's method, geocentric coordinates operational
| 2.) Cowell's method, barycentric coordinates operational
3.) Encke's method, geocentric coordinates operational
4.) Encke's method, shifting reference body operational
5.) Varicentric method, geocentric coordinates checkout

6.) Varicentric method, barycentric coordinates checkout
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CALCULUS OF VARIATIONS
By
David Schmieder

SECTION I. INTRODUCTION

An attitude often found in Future Projects Branch is
that difficult problems existing at this time in space flight
and guidance theory should be attacked in their complete
form and solved stepwise, rather than to be watered down
and covered up with assumptions which enable the individual
problems to be solved completely and immediately. Among the
many advantages believed to be gained by this approach are:
(1) A large carry-over of knowledge from the work done in
connection with one specific application to the work to be
done in connection with the next, since most applications
are based on the same general theory. If many restrictions
and simplifying assumptions are made for one application,
the work done is not likely to give much information toward
the next. (2) The "state of the art" in the development
and use of the underlying scientific disciplines tends to
be advanced, so as to aid in the solution of more difficult
problems in the future, and (3) a better control is had
over the problem, in that the degree to which the ideal
solution of the physical problem is attained is known.

Such a philosophy has influenced the development of
the adaptive guidance mode, as exemplified by the incorpor-
ation of optimum trajectories into the corresponding guidance
processes. Also, by the nature of the scope of work of the
branch as described earlier in this report, much trajectory
computation is involved, with certain flight mechanical
specifications to be met. Certainly, the most economical of
such trajectories must be found, for even if they were not
used in practice, they would be needed for comparison purposes.
If this optimization problem is stated in complete form, then
it has as its "independent variable" an entire function, the
thrust direction function and, therefore, automatically falls
into the realm of the calculus of variations.
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SECTION II., DISCUSSIONS
A. GENERAL DESCRIPTION OF THE VARIATIONAL PROBLEM

The scientific discipline represented by the calculus
of variations has been receiving Increased attention recently,
and s8till needs further development in many areas. To
illustrate these areas, we may look at the breakdown of a:
general problem in the calculus of varlations as shown in
Figure 1.

STRUCTURE OF PROBLEM

| Phy:ical Frob—le_m—saa;;e;t-:

 Physical Pr S RaEEEE

Required

Accuracy
lMathematical Problem Statementl—_— of Solution|
I
| 1 I 1
Definition of Definition of Definition of Class Quantity
Variables Constraining | | of Admissible Functions to Be
Relationships|| Over Which Solution Extremized
Between Is to Be Determined
the Variables ,
| 1
Equality  and L Physically Arbitrarily
{nequality Constraints ‘ Required Assumed
L ]
[ Analysis .
Necessary and/or Sufficient[™™|  Solution to —
Conditions on Variables Mathematical Problem Solution to

Physical Problem e 00,10

FIGURE 1

For the work in our branch, we usually have as a basis
some physical statement of the problem. To arrive at the
solution to this physical problem ordinarily requires a
formulation of the problem in mathematical form. The
solution of that mathematical problem should, with proper
interpretation, determine the desired physical problem
golution. This step in the solution is often a difficult
one, and is a point where we wish to avoid making arbitrary
simplifications.
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A typical mathematical problem statement may be broken
down into the basic parts shown in Figure 1. This includes
first a definition of the variables in the problem, and
therefore, an implication that if any other quantities vary,
their variation does not affect the problem within the
required accuracy of solution. Next, there are certain
constraints on these variables, imposed by the physical
situation, which must be formulated mathematically. Then,
corresponding to the physical problem of best utilizing the
remaining degrees of freedom for these variables, there is
a mathematical statement defining a quantity to be extremized
and the class of functions which are to be considered in the
search for a solution.

Note that the constraining relationships are further
broken down into those physically required and those
arbitrarily assumed. The same may be said of the class of
admissible functions. Such relationships that are arbitrarily
assumed for the sake of expediency are what we wish to elimi-
nate, so as to give as much freedom as possible to the
extremizing functions. A great variety of equality and
inequality constraints, and quantities to be extremized,
result from the various physical problems that we face; and
each presents its own particular difficulty in the mathemati-
cal analysis to be made. The result looked for from the
analysis is a set of conditions on the varlables which are
both necessary and sufficient to meet the specified conditions
of the problem, and which are in a useful form. At the pres-
ent state of development, this result is only partially

available.

In an effort to more closely approach this goal, several
methods of attacking the variational problem are currently
being pursued, and are listed in Figure 2.

This figure also shows the relation of the theory to
the applications made in our work, and shows in what areas
some of the contractors are working. The symbols referring
to the various contractors are defined on page 83 of this
report. These applications will be discussed after a general
description of the general nature of the approaches shown
in Figure 2 has been given.
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APPROACHES T0 THE THEORY:

—

Other

Classical Pontryagin Direct Dynamic
MSEC MEw ] Programing
GE RA MHW
VAN L
] S— 1 |
Two Point One Point
Boundary Value Problem Boundary Value Problem
MSFC
MEW
RTN
AREAS OF APPLICATION: 1
Vacuum_Flight ] | Atmospheric Flight |
I 1 I e |
Impulsive Thrust |— High Thrust | | Low Thrust Propelled Flight | | Reentry
Ny MSFC MSFC MSFC MSFC
AUB 60 AUB
UR | R!N

B. EXAMPLE PROBLEM

|Performance|

FIGURE 2

|Guidance|

For an example with which to illustrate the various
approaches, consider the flat earth problem as shown in-

Figure 3.

In order to more clearly show the main characteristics
of the approaches and the analogies between them, a vector

notation is used. The components Xz, X4

coordinates of the point assumed to have mass Xs,
Xp their first time derivatives.

Motion
by a constant gravitational acceleration
vector having a magnitude F for time

are cartesian

and x1,

is iInfluenced only
T and a thrust
t0<t<T:

zero for all

other time, and which makes an angle x with the x4 axis.
It is desired to find the time history x(t) which causes
conditions to be reached at t = T such that setting
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FLIGHT GEOMETRY FOR AN EXAMPLE PROBLEM

Different Flight Paths Resulting from
24» Different Choices of y(t), X(t).

Time = T
i=i'|'

Mission:

Time = t Time - t
{' / !me ' i H il .

>X3

FIGURE 3

F =xs =0 for t > T causes x(ty) = Xy at some given later

time ty, and in addition accomplishes this with the maximum

value of x5(T). Newton's laws of motion are assumed.

The mathematical formulation for this problem is given
in Figure 4. The constraints are given by the equation of
motion (1.), the initial condition (2.) and the final
conditions (3.). The quantity to be extremized and the
class of admissible functions are given by (4.). For this

example problem, no claim is made
known physical problem, as it is
demonstration purposes.

for applicability to any
over simplified for
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MATHEMATICAL  FORMULATION

1. Equations of Motion: 2. Initial Conditions: 3. Mission Equations:

F .
—x_s S|||'x' T x“ x]. ‘
{;cosyk-g X5 xz.-g(t.-I
X: +f x(t, ) X3
' X f i LM h Xoy - XpultyT)
2
X, X Xy Kol T)- %g(t.—T)
Kl ) KZ Kl + KZT n
- - L - -

4. Mathematical Problem

To find among all [twice differentiable | functions

i),y

that set which satisfies [1., 2., and 3.,] and maximizes [x.].

FIGURE 4

C. CLASSICAL APPROACH

An outline of the procedure taken by the classical
approach to this problem is given in Figure 5. First, the
vector T and scalar product G are defined as shown,where f
is as defined in Figure 4. Thus, imposing the constraint
T causes the equations of motion to be satisfied. A result
of the classical theory then 1s the necessity for X to exist
such that the given Euler-Lagrange equations are satisfied.
For the present example these are written out in equations
(5.). Thus, it 1is seen that the problem of finding the
optimum function becomes the problem of solving the two-
point boundary value problem represented by the system of
differential equations (5.) and (1.), together with part of
the end conditions at the two-point t5 and T, glven by (2.)
and (3.), respectively. What a solution would consist of
may be defined in two slightly different forms. One would
be the determination of the optimum functions X(t), x(t),
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CLASSICAL APPROACH

Define g =

[ 1]
1l
=t | e
Q| e

A necessary condition is that 1 exists
satisfying the Euler-Lagrange equations :

2t _ a3t
dx dx
and .
a6 _ a6
ax ai
or
__13 ]
_l‘
0 -
0 = A
£ (siny + )
_XSZ X COSX_
and : 5.

by cosy — X, siny = 0

Solve the resulting two point boundary value
problem: 1,2,3.5.+ additional necessary conditions.

FIGURE 5

and T, as required for performance work. The other, more
applicable to guidance work, would be the determination of
the necessary values of the remaining initial conditions
*(tp) and of T as functions of the given X(ty) and mission
constants in equations (3.).

The additional necessary conditions mentioned at the
bottom of the chart refer to other necessary conditions found
in the theory which are needed if sufficiency is to be demon-
strated. These involve such things as distinguishing maxima
from minima, and insuring proper behavior at the end points.
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D. PONTRYAGIN APPROACH

The Pontryagin approach starts by defining the quantity
to be extremized in the form of a scalar product of two
vectors and defining the variable p through differential
equations as shown in Figure 6. Then when H is defined as

PONTRYAGIN APPROACH

0
- 0
To maximize S=¢-X(T) where &= g :
Define § by p;=-b-F, ()= L1
--pg 0
_ _p4 0
or b= o [] ﬁ(T)= 0 y 6
0 0
- stz('{Si"X*pz“’sX)_ .—1 .

so that if H is defined by H=p-f

then X =W, and p=-H

The Maximum Principle states that
H must be a maximum with respect to X at every

time t :
%:0 -{;(plcosx—pzsinx)ﬂ 1.
2 .
g—xﬂz-<0 —{;(plsmx-p,cosx)<0 8.

Solve the resulting two point boundary
value problem: 1., 2.,3.,6., 7., under restriction 8. plus
additional necessary conditions.

FIGURE 6

shown, the system of differential equations for E and the
equations of motion (1.) can be expressed in the canonical
form given next. The Pontryagin Maximum Principle then
states that H must be extremized with respect to the value
of x at each time along an optimum trajectory. For our
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example, the equations for p are written out in (7.), and
the conditions that H be maximized in (8.) and (9.). We

are thus led to the two-point boundary value problem defined
by equations (6.), (7.) and (1.) with end conditions (2.)

and zg.g and the added restriction (8.). 1In fact, except

for .

approach, with "p's" substituted for "A's". Also, (8.) can

be derived from further necessary conditions in the classical
approach. The advantages claimed by the Pontryagin approach
are perhaps a cleaner analysis, and the capability of handling
certaln constraints and classes of admissible functions which
have not been successfully treated by the classical method.

this 1s the same system as obtained by the classical

n

- However, as mentioned before, a two-point boundary value
problem remains. An analytic solution to this would be quite
useful, but at this time most solutions are obtained by
simply guessing a set of the remaining initial values and T,

solving the resulting one-point boundary value problem, and
iterating for the solution of the two~-point problem.

E. GRADIENT APPROACH

Another approach to the variational problem is the
Gradient method, in which the optimum x function is approached
through non-optimum functions at the same time that one or
a sequence of two-point boundary value problems are solved
by iterated one-point problems. This is done as follows
(see Figure 7): A function space is set up in which each
point corresponds to an entire function (t) The
"distance" between two control functions in this space is
defined in some manner, such as the essentially Euclidean
metric shown in the figure. Then it can be shown that the
path of steepest descent from an arbitrary "point" y(t) to
the optimum X(t) has the tangent glven next on the chart
which turns out to be the partial with respect to x of the
Pontryagin H function. The term "steepest", of course, means
that it increases the quantity to be maximized as much as is
possible by a change in x(t). Thus, taking finite steps
down this tangent or gradient vector would define the scheme
shown for computing a sequence of improving x functions,
where the gradient vector is to be recomputed when it differs
sufficiently from the actual path of steepest descent It
is clear, then that when the optimum x 1s reached, xk
would equal XX, and each component of Hy would have a zero
magnitude. Thus, the stepwise procedure brings a satisfaction
of one necessary condition obtained in the Pontryagin approach.
The derivatives of D to be computed are the same as given in
the Pontryagin approach, the only difference being that they
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GRADIENT APPROACH

Define distance in control fumction space,

et lN-wll=/50 STa-xg) dT

Then the tangent to the direction of maximum
increase in S at a”point” Y in the function
space is v, where

aH

v, = —i? = -
l X Bx.l

To generate a sequence of improving control
function Y, compute

i(xn) — iu) ¥ oy

Our example has a one dimeasional y, and
the sequence is given by

xun) - xu) + & <|’1L cosy — P, L sinx>9.
xs x5

Solve the resulting one point boundary value problem:
1., 2., 3., 6., and 9. with arbitrary %, and iterate.

FIGURE 7

are now computed along non-optimum trajectories for all but
the last step. The advantages claimed by this approach are
that certain problems involving discontinuous functions,
such as between stage coasting periods, are more easily
handled, and some of the difficulties encountered in the
iterative solution of the two-point boundary value problems
of the other approaches are avoided.
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The decks now in use will be described briefly.

A. S-SERIES COMPUTER DECKS

In the S-Series, rotational dynamics are simplified
to the steady state solution, and motion is assumed to be
planar about a non-rotating spherical earth with or without
atmosphere. The trajectory shape is determined by prescribing
certain variables, such as angle of attack a or thrust acceler-
atlion direction y, as definite functions of other variables.
For reliability and speed of operation, specific decks are
set up for fairly specific purposes; as an example, for
atmospheric propelled flight performance studies, atmospheric
reentry studies or control studies, all on simplified models
of the physical situation. There are around eleven such
decks in use, most of them using Runge-Kutta integration.

B. B-SERIES COMPUTER DECKS

A B-Series of decks 1s based on an accurate representation
of all flight mechanical and rigid body dynamical details.
Flight is about a rotating oblate spheroid with atmosphere.
These decks are used to check results and design work of the
S-Series decks, and to provide refined and accurate informa-
tion necessary for the actual flights of vehicles.

C. V-SERIES COMPUTER DECKS

The V-Series decks are again primarily used for perform-
ance and guidance design work. The common feature of these
decks 1s the replacement of the arbitrary shaping functlons
found in the S-Series with functions derived according to
the calculus of variations. The first decks in this series
were propelled flight in a vacuum, 2 dimensional, with a
spherical earth assumed. These decks are written in both
cartesian and polar form, with both Runge-Kutta and Taylor
Series integration procedures. These decks have been
involved in most of the recent upper stage performance
and guidance study work.

The effect of atmosphere has been added with the
assumption of small angles of attack to form another deck
for propelled flight.

Another deck under experiment is using the flat earth
solution as a base and using a series type integration to
evaluate the perturbations due to the spherical earth.
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F. DYNAMIC PROGRAMMING APPROACH

The last approach mentioned on the earlier chart is
that of dynamic programming. This approach is based
entirely on Bellman's Principle of Optimality that states
that if a trajectory from tgo to T is optimal, then any sub
arc of that trajectory from any intermediate time, t, to
the final time must also be optimal. In the computation
procedures then, to obtain the optimum trajectory from
to to T, the interval is covered with a finite grid which
may be traversed in a finite number of ways. Starting at
T and working backwards on the grid, an analagous grid is
get up which represents at each point the value of the
quantity to be extremized if the optimum trajectory is
traversed from the corresponding point on the original
grid to the desired end conditions at T. Upon reaching
to by this procedure an optimum trajectory is determined
by following the path back through the first grid defined
by the smallest values in the second grid. The advantages
claimed by this approach are similar to those of the gradient
approach, since it too is a stepwise numerical procedure.
Rigorous analytic foundations for this approach have not
been found to be readily accessible in the literature.

Certainly approaches other than these four exist,
and more will be developed. At present, only the first
three and the corresponding one-and two-point boundary
value problems are being attacked by Future Projects Branch
and the associated contractors, as indicated in Figure 2.

SECTION TIIT. APPLICATIONS

The results of such efforts usually are seen in the
form of the various "deck's" for trajectory computation
used by the branch for application in the various fields
shown in Figure 2. The "deck" itself will be considered
to be the systematic carrying out of a given sequence of
computations, usually the solution of a one-point boundary
value problem. In order for the decks to be used effectively,
iterative schemes must also be programmed for use with the
decks. Fach deck may require a particular type of iterative
process, so that having a deck avallable does not always
mean that production can be run on it. The problem involved
is that of moving from an arbitrary point on an implicitly
defined surface to a desired point. Various procedures for
dolng this are in use or being developed, including first
and gsecond order differential correction methods, and the
ordinary gradient method.
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The development of a 3 dimensional variational deck
has been performed by the Auburn University contractors.
An iteration scheme for use with that deck is now under
development in the branch.

A low-thrust deck is presently being developed by
Grumman Alrcraft Engineering Corporation, by the gradient
approach, in both two and three dimensions for application
to interplanetary and near earth orbit transfer.

Another deck being experimented with in-house 1is a
calculus of variations reentry deck which minimizes the
integral of the square of the total drag. The results of
a trial run are shown in Figure 8.

EXAMPLE OF AN APOLLO REENTRY TRAJECTORY
RUN ON THE EXPERIMENTAL 2-DIM CALCULUS OF VARIATIONS REENTRY DECK
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FIGURE 8
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METHODS OF EXPLOITATION OF LARGE-SCALE AUTOMATIC COMPUTERS
By

Nolan J, Braud

SECTION I. INTRODUCTION

Some of the problems encountered in studies of Space Flight
and Guidance Theory are quite extensive and require a judicious
utilization of large scale computers and computer programs. The
purpose of this report is to present some of the scientific disciplines
involved in achieving numerical results for such problems.

Three major problem areas are considered for Large Computer
Exploitation. They are a Function Differential Generator, the
development of a Statistical Model and Investigations of Multivariant
Functional Models (see Figure 1). The areas of manpower utilization
under the contract "'Space Flight and Guidance Theory" are also
indicated, where the symbols representing various contractors are
defined on page 83 of this report,

[ LARGE COMPUTER EXPLOITATION |

- | |

Function Statistical
Differential Multivariant Models
Generator Functional MSFC
UNC Models ¢

[ ]

Linear Least Modified
Programing| |Squares| |Least Squares
UNC MSFC > MSFC

¢
NLS NLS

l

| APPLICATIONS |
| |

2 l
General ; Guidance |
Perturbation— Mission Equations
RA Criteria ?
Formulation Analy»t
MSKC MSFC

e 107,1-3-42

FIGURE 1
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SECTION II. DISCUSSIONS
A. TFUNCTION DIFFERENTIAL GENERATOR

The Function Differential Generator is a computer program that will
differentiate a certain class of algebraic and transcendental expressions
automatically. The program utilizes a set of algorithms which trans-
forms a given expression in such a way that its derivatives are obtained
by successive application of the basic rules of differentiation for
elementary functions. It is interesting to note that the allowable
class of expressions must be closed under the operation of
differentiation,

The work on the Function Differential Generator is being done
exclusively by the University of North Carolina. Their procedures
entitled, "Analytic Differentiation by Computer," are described in
MTP-AERO-61-91 dated December 18, 1961.

The program operates in the following fashion after .having
designated the expression to be differentiated and having chosen the
variables of differentiation, The first step is to transform the
given expression into a correlated set of triples (operand-operator-
operand) such as A X B, This results in a matrix representation of
the expression in a parenthesis-free form. The next step is to
determine the derivative of each of the triples or rows of the matrix.
Then follows a collection, in a correlated fashion, of these elementary
derivatives, Hence, the derivatives of an expression are acquired by
successive application of the basic rules of differentiation for
elementary functions,

The work on this program is not complete at this time, but a
preliminary application of the procedures has been made to determine
the coefficients for the Taylor's Series expressions of the simplified
flat-earth calculus of variations problem., Only first order derivatives
were evaluated; however, the results would indicate a promising future
for a computer program of this nature.

B. STATISTICAL MODEL DEVELOPMENT

The development of Statistical Models and the investigation of
Multivariant Functional Models arose out of requirements in the
implementation of the Path-Adaptive Guidance Mode., These two areas
of discipline are being used directly in the writing of the guidance
functions of the adaptive mode. The nature of the steering and cutoff
function in the Path-Adaptive Guidance Mode are shown in Figure 2,

where the "o" subscript refers to instantaneous conditions,
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NATURE OF THE STEERING AND CUTOFF FUNCTION
IN THE PATH-ADAPTIVE GUIDANCE MODE
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FIGURE 2

A Statistical Model is understood to be a collection of quantative
data that represent a physical situation. The generation of a
Statistical Model that the guidance equations are to represent involves
a fairly extensive performance and trajectory investigation. The study
involves the development of a manifold of trajectories that represents
all possible disturbances which can affect vehicles of the Saturn class
and allow for mission achievement, The trajectories are all determined
by applying the theory of the calculus of variations, which results
in the minimization of fuel consumed for each case. Trajectories
determined under such principles result in the specifying of an
optimum value for the steering and cutoff parameters at each point
along their path. By considering the volume of trajectories as a
collection of such points, we arrive at the tabulated values which
are to be approximated. The development of Statistical Models that
represent the quantitative data for the Adaptive Guidance Mode is
done by MSFC, with some assistance from Chrysler Corporation.
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C. MULTIVARTANT FUNCTIONAL MODELS

The studies in the area of Multivariant Functional Models are
concerned with the investigation of various curve fitting procedures
to determine which is preferred for our needs in guidance function
writing. At the present time a polynomial form has been tentatively
selected for the representation of the guidance functions. The
expansion of the series used are indicated in Figure 3. From this
it is seen that the instantaneous steering and cutoff functiomns are
expressed in a series of terms in the state and performance variables.
The coefficients (aj) are constants that are to be approximated by
multivariant expressions.

EXPANSION OF THE SERIES USED IN THE IMPLEMENTATION
OF THE PATH-ADAPTIVE GUIDANCE MODE

X

o OF bty = ag +ax + a,y + ax o+ oay

35(%) + as(%)-r a,t + ax’ + agnxy

a ¥ 4 L A kY o+ L. s Va“x(i-fl-) +

a”(%)(%.) + ... + a,stz +

FIGURE 3
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The Multivariant Functional Models which have received most
emphasis are Least Squares, Modified Least Squares and Linear Program-
ming (see Figure 4). These methods are being compared for economy,
accuracy, speed and ease of use.

MINIMIZING CRITERIA FOR CURVE FITTING

LINEAR PROGRAMING

L 2| a0 -tz |

=1

SN UUTRRILEE
LEAST SQUARES

2
[P(2,) - f(z,)]

1

>
K:

FIGURE 4

Linear Programming is a mathematical technique for finding an
optimum solution to sets of simultaneous equations with more variables
than equations, where the variables cannot have negative values.
Polynomial approximation problems such as those encountered in the
empirical writing of the guidance functions can be formulated for
solution by the Linear Programming methods. The problem must first
be stated as either a maximization or a minimization problem, and in
the form of an inequality. Then slack variables are introduced which
transform the problem statement into sets of equations that are solved
by some conventional means of solving simultaneous equations. The
University of North Carolina is conducting the investigations on Linear
Programming application to the problem of writing guidance equations.



56

Least Squares approximations are achieved under the principle
that the best value of a quantity that can be deduced from a set of
observations is that for which the sum of the squares of the deviations
from the observed is a minimum,

Figure 4 displays the minimizing criteria that have been used for
curve fitting purposes. The L criteria requires that the sum of the
absolute deviations be a minimum, whereas the L criteria requires that
the absolute value of the maximum deviation be minimized. The minimizing
criteria under the least squares principle is that the sum of the squares
of the deviations should be a minimum,

SECTION III. APPLICATIONS

These criteria have been used to generate many guidance polynomials.
The most favorable results have been generated by the method of least
squares., This stems from the fact that much more effort has been.
devoted to the least squares methods than to the other techniques.
Even though linear programming has not been thoroughly investigated, it
seems to offer distinct advantages in the area of fitting rational
polynomials, where more accuracy is anticipated ‘as well as a reduction
in the number of terms in the polynomials, This approach to the problem
will be undertaken by Chrysler Corporation in the near future. Another
linear programming technique which may offer some advantage is a method
available for approximating a polynomial of a given form which requires
that the absolute deviation at the K-th point be less than a preassigned
value. If the problem cannot be solved under the specified constraints,
the linear programming routine will indicate that no solution can be
obtained. ‘

The prime consideration in the area of modified least squares is
that of fitting the residuals., By this method a polynomial of a given
form is fitted by the conventional least squares approach. Then
succeeding or higher order terms are fitted to the residuals or errors
of the original polynomial. By approaching the curve fitting problem
in this fashion, advantage is gained by the fact that a smaller set
of simultaneous normal equations are solved in each step of the problem.
Hence, greater accuracy is maintained in the over-all solution to the
problem,

SECTION IV. CONCLUSIONS

There are many problem areas, common to almost any multivariant
approximating procedure, that need to be investigated before a firm
control will be had over the problem of writing guidance functionms.
Some of these problem areas are:
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1. The investigation of existence and uniqueness conditions for
a function that will represent the guidance functions while minimizing
the deviations,

2. The determination of a means of selecting the optimum data
sampling from a large statistical model.

3. The problem of weighting the data sampling.
4, The use of probability theory.
5. The use of mathematical statistics.

6. The choice of an optimum set of parameters to be represented
in the polynomial,

7. The means of achieving an optimum solution to a large number
of simultaneous equations.

It is generally believed that a stronger control over these
areas is needed in order to obtain the optimum solution to our problems.
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PRESENT THEORY AND TECHNIQUES
APPLIED TO SPACE VEHICLE PROBLEMS

By
John B. Winch

SECTION I. INTRCDUCTION

The preceding chapters in this paperhave presented the
sclentific disciplines being studied by Future Projects
Branch. The purpose of this section is to illustrate how
these disclplines are being applied as needed by the branch
in the solution of flight mechanical problems. First, the
performance and guidance problems and the bringing together
or integration of the total vehicle system will be discussed.
These problems will then be further illustrated by applications
fo two simple problems pertaining to missions which have been
assigned to the Saturn C-1.

The first application is that of a range independent
injection into a circular orbit. The second is a range
independent reentry mission. These problems'are solved by
identical procedures so that comparisons can be made. Some
results are given, but they are not intended to represent
any best or final solutions.

SECTION II. DISCUSSIONS

The term "System Integration" 1s used here to cover the
-problems involved in bringing the various parts of a vehicle
system, which have been studied separately, together.
Independently, the parts have thelr own optimum solutions,
but these solutions depend also upon the state of the
remaining parts of the system, so that an over-all optimi-
zation problem exists. Some of the major parts of the
system are: propulsion and propellant distribution between
stages, structures, instrumentation, computer, aerodynamic
characteristics, control, guldance, and trajectory shape.

The system integration must be studied as affected by
such things as mission, and removable constraints.
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The term "mission" 18 defined here to mean the results
desired of the vehicle flight. Examples are: an impact at
a prescribed point on the lunar surface, a rendezvous with
a body in some prescribed orbit, or a simulation of reentry
from a lunar flight. "Removable constraints" are defined as
those constraints which can be either modified or removed
completely. For example: an altitude limitation due to
aerodynamic heating considerations which can be removed by
adding heat protection material to the vehicle, flight path
limitations for tracking which can be removed by adding

more tracking stations, or flight time to the moon for
manned flight which can be removed by adding more life
support equipment for the astronaut. Other constraints were
mentioned in the chapter on "Calculus of Variations.

The missions are normally defined at higher levels of
the administration, and the removable constraints depend on
hardware developed in other branches and divisions. The
missions requested and the development of hardware depend
upon an early feedback from the system integration studies.
Later work refines the system so that the best possible
satisfaction of the mission 1s obtalned with the developed
hardware.

The evaluation of a given hardware configuration as
applied to a given mission 1s generally made in two phases -
performance, and guidance.

To 1llustrate these problems, we will consider as the
glven mission a  lunar impact. In solving a performance
problem, 1t is conceptually easier to start at the point
of mission fulfillment and work backward. The first step
then would be to generate a family of optimum trajectories
going from the moon back to the earth. The generation of
the trajectories could be accomplished through the use of
the computational techniques discussed in the chapter on
"Celestlal Mechanics ~ Special Perturbations." These free
flight trajectories would form an envelope around the earth.

The next segment of the problem would involve the
generation of a family of optimum powered flight trajectoriles
from the launch site to intersection with the family of
lunar trajectories. These powered flight trajectories might
include parking orbits and/or orbital rendezvous as dictated
by the vehlcle and system constraints on the problem. The
method of generation of the optimum powered flight trajec-
tories would be the calculus of variations procedures
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discussed in the chapter on "Calculus of Variations." The
calculus of variations technique to be used would be selected
on the basis of the one which was most easily adaptable to
the problem to be worked.

The definition of the mathematical surface joining the
powered flight trajectories to the lunar trajectories is a
most difficult problem, and represents an area in which a
large effort would be required. Let it suffice to point
out that the cutoff point of powered flight must consider
both propelled flight optimization and the optimization of
the midcourse corrections to follow. A tradeoff situation
must be resolved between the two parts of the problem so
that the entire system 1s optimized, not just one segment
-of 1t.

The guidance problem may be more easily understood by
starting from lift-off and following the flight chronologi-
cally. Guidance during propelled flight could be provided
by the adaptive guidance mode, which involves the use of
the numerical techniques discussed in the chapter on
"Large Computer Exploitation." In prineciple, the techniques
discussed could also be used in representing a lunar trajec-
tory mission criterion; however, it would probably be better
to make use of the schemes discussed in the chapter on )
"Celestial Mechanics - General Perturbations."

The technologies used in these studies are still 1n a
state of development. This necessitates studies into an
apparent problem area before a solution to the problem is
formally requested. For this reason, studies have been
initiated in the field of trajectory studies for low thrust
vehicles, such as would be the case if ion propulsion were
to be used for a stage. Variable thrust is another physically
possible innovation which may find practical use in a few
years. Reentry problems are present now which demand that
some studies be conducted on optimum flight paths during
reentry into the atmosphere, since these determine the
conditions that must be met by the preceeding phases of
flight.

The one sample problem of lunar impact is not the only
example where all areas of scientific investigation discussed
in this paperwould be utilized. A brief inspection of future
missions for Saturn vehicles shows flights of the following
types:
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Earth-Orbit

Lunar impact

1.
2.
3. Lunar circumnavigation
4., Soft lunar landing

5.

Interplanetary

Each of the missions listed would demand input from all
of the areas of sclentific endeavor in order that a well
founded scilentific analysis of the problems could be
conducted.

SECTION III. APPLICATIONS

Two problems were chosen for applications. These will
be designated Case I and Case II. The guidance application
was made using the same terms and the same pattern of select-
ing points for each part of both cases. This was done to
bring out the effects of changes in mission criteria formu-
lation., It 1s planned to bring out a note covering more
detalls at a later date. This later note will present
optimum fits as to the selection of terms and points.

A. THRUST AND WEIGHT DATA

The Saturn C-1, Block II vehicles are two stage configu-
rations. The first stage (S-I) is powered by eight 188K 1b
engines, four of which are gimbal mounted for vector thrust
control. The thrust and weight characteristics and the
mass distribution data were obtained from the Saturn Design
Criteria Book dated May 12, 1961.

B. CASE I

For this case the misslion crifterlia was assumed to be
that of injection into a circular orbit. No requirement
was assumed for the plane of the orbit or the position of
the vehicle in the orbit. This 1is referred to as range
independent in the sense of trajectory optimization. The
circular orbits desired were assumed to be one, two, and
three hundred nautical miles above the surface of the earth.
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The performance problem is solved first. In doing this,
the first stage trajectories were shaped so as to favor a
seven engine acceleration history from lift-off. This
constraint was imposed by rigid body control considerations.
Subject to the constraints given, the criteria used to
select a first stage tilt program was that the second stage,
assuming idealized performance, deliver maximum cutoff weight
into the specified injection conditions. The notation 8/7
and 7/7 will be used to designate trajectories for which the
first stage has simulated a flight with 8 and 7 engines,
respectively, following the tilt program just described.
These two cases define the limits of the volume of first
stage trajectories for practical purposes. The second
stage flight of this two stage missile is above the atmos-
phere. Therefore, any desired angle of attack can be
obtained without undue aerodynamic forces restraining the
missile. Full guidance is useéd during the second stage in
all cases. This sample problem was computed considering
in-plane flight only. The same techniques used for this
problem may be used to solve out-of-plane cases.

In solving the guidance problem, the steering equations
were developed by empirical methods. This development was
started after the performance problem had been solved. The
first step in the empirical method is to establish a
statistical model. Reference is made to the section on
"Large Computer Exploitation." The statistical model was
established by computing a famlly of optimum trajectories
which satisfy the mission criteria. This family of
trajectories covered the volume of space through which any
vehicle might be expected to fly, up to a given probabillity
of occurrence. The "points" (to be defined below) of these
trajectories make up the statistical model.

The trajectories were computed using a two dimensional
‘8space-fixed cartesian coordinate system. The origin was
chosen as the center of the earth. The positive y-axis
passes through the launch site. The x-axis i1s in the plane
of flight and is positive down range. Both position and
veleoeclity measurements were assumed to be available, trans-
formed into this system. The term "point" (as used in the
statistical model) is defined as the parameters which affect
the desired thrust angle for an optimum trajectory. These
parameters are position (X), velocity (X), and engine
performance data (F/m, m/m, etc.). F/m is the ratio of
thrust to mass. m/m is the ratio of flow rate to mass.

The thrust angle (x) i1s defined as the angle from the y-axis
to the long axls of the missile. The desired tilt angle (y)
is assumed to be a function of the point in phase space.
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Thus,
X =X (sc—: ;s F/m: I.n/m: t) .

The statistical model then 1s comprised of points of
the space and thelr related y value.

The statistical model 1s composed of an arbitrary
sampling of points from the phase sSpace. This sampling
was made by selecting points on 32 trajectories at 15
second intervals from 135 to 585 seconds and at 5 second
intervals from 585 seconds to cutoff. The thirty-two
trajectories were selected in the following manner.
Trajectories for the first stage were run for two cases.
These cases were 7/7, and 8/7. Two points were interpolated
between these extremes. Second stage trajectories were
computed from these four initial points, with the following
second stage conditions: first, standard (or expected)
second stage performance; second, variations in thrust
level of * 2%; and third, variations in specific impulse
of *+ 4 seconds. This established a total of twenty trajec-
tories. Twelve addltional second stage trajectories were
computed with standard performance and initial state coordi-
nates varied between the 8/7 and 7/7 end points. This
samplling resulted in a total of about 1220 points of the phase
space. This procedure was used throughout the study for
comparison purposes.

A few typical polynomials were arbitrarily selected
for this presentation. These polynomials contain 7, 8, 28,
36, 47, and 57 terms. The seven term polynomial contained
only first order terms without m/m; the eight, all first
order terms; and the 47 and 57, selected first, second,
and third order terms. Again, the same terms were used
for all parts of this study. It should be noted that this
selection 1s not the best. All possible steering polynomials
should be considered. The computer capacity dictates that
ferms higher than third order may not be used. There are
120 terms up to and including third order, and 103® possible
combinations of these terms. Although many of these possi-
bilities may be eliminated by inspection, the problem of
selecting a best polynomial for a specified mission is still
a tremendous task.
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The measure of error of the steering function is hard
to determine. Errors result because the statistical sample
only gives a discrete representation of the phase space,
and also cannot be fit exactly. Two effects of errors in
the steering function may be noted. The first is that the
mission criteria cannot be met exactly (except for a mission
dependent upon one function which increases monotonically
with time). The second is, that more than the theoretical
minimum of propellants is consumed. These effects may be
measured on each trajectory computed under simulated active
guidance. Each set of assumptions for a simulation results
in a corresponding value for mission achievement error and
additional propellants consumed. By choosing several sets
of assumptions from the statistical model which was fit,
and combining the resulting set of errors and additional
propellants required, some measure of the error of fit
for that particular steering function can be computed.

In this application, only the limiting sets of assumptions
(8/7 and 7/7) were used to check the steering functions in
this way. Detailed analysis of errors was not considered

economical for this application.

Another measure of accuracy of the steering function
is the RMS (root—mean—square) error with respect to the
points of the statistical model. This criteria is used
mainly as a mathematical guide, since it depends upon the
particular choice of points for the statistical model, and
is more in the nature of a necessary rather than sufficient
requirement. That 1s, a small RMS 1is necessary for a good
steering function, but does not guarantee one that meets
the practical requirements of the problem.

The two polynomials without (m/m) terms were generated
to investigate the effect of leaving out this parameter.
There 1is some doubt as to the accuracy and reliability of
the measurement of this term from the engineering point
of view. ©No firm conclusion as to the effect of dropping
this term may be deduced from this study. However, some
idea as to the error caused may be inferred from these
special cases. It maybe mentioned that in range and time
dependent cases m/m may play a more important role in the
steering equations.

The cutoff equation used in this study caused cutoff
to occur when the desired veloeity was reached. This
expression was used so that errors would appear in path
angle and altitude only. Also, it enables a measure of the
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~ steering equation independent of the cutoff equation to be
made. Later studies will integrate the errors caused by
both cutoff and steering equations.

Tables 1 through 3 present the coefficilents of the

first order terms of the six steering polynomials discussed
previously.

TABLE 1
SATURN C-1: 100 N.M. RANGE-INDEPENDENT MISSION

oeffripietnté dof
irst Order
':lflm%]erms Terms| & | 1 a ay ag a a; | RMS

Used for [constant| x ¥ X y F/m t mm | Error
Steering Functio .

1.8 Terms 1stOrder|—1325{ 324.6] 236.5|—4779] 29.05/ 3.268|-58.08/—90.24] 2.31

2.36 Terms
Ist & 2nd Order |—6646{—6092| 599.3| 1585 618.6| 80.52| 870.6] 9311 .64

3.47 Terms Ist, 2nd|
& Selected 3rd 67581 —1140\—2188| 19.33] 130.4/—1070! 1484 17791} 45
4.57 Terms 1Ist, 2nd|
& Selected 3rd | 13247] 479.1|—3824|—37176|-41.90{-10168] 0 1340307 .22
5.No. 1wo mm Terms|-1349| 320.9| 238.6-42.29| 30.35| .6217|-59.12| 0 2.33
6.No. 2 wo mjm Terms|—6303|—-4773| 518.8) 1669 7281 248.9/ 6324 0 J2




TABIE 2

SATURN C-1: 200 N.M. RANGE-INDEPENDENT MISSION

Coefficients of
First Order

':";"'Tb:r'ms Terms| a, a, a, f ay as a | a RMS
Used for Constant| «x ¥ X y F/m t m/m | Error

Steering Function
1. 8 Terms 1st Order] —1256{ 2853 2179/-42.84 2502 4.114/-52.14 —-67.19 192

2. 36 Terms
Ist & 2nd Order | 2821} — 4087 —1506| 699.7] 133.7] 6252 7429/—2124] 43

3. 47 Terms 1st, 2nd i
& Selected 3rd 11953/ -2672| -4109, 2587, 86.20| —1589| 1946/ 56332 .35

4. 57 Terms 1st, 2nd
& Selected 3rd 5562 9890/—1438/-3050{ —144.6] 1736/ 0 |-1027%0 .12

5. No.l wio m/m Terms| - 1268 2815( 2185/—3945 26.15] 2.287| -53.06[ 0 1.94
6. No.2 wo m/m Terms| 1518| — 4256/ - 1291 8460, 2870 1182 6731 0 .59

TABLE 3

SATURN C-1: 300 N.M. RANGE-INDEPENDENT MISSION

Coefficients of

Namber~Jirst Order
of Terms™\Jerms 2 3 O 3 4y a a a, | RMS
Used for Constant| y i j F/n t im | Error

Steering Function
1.8 Terms IstOrder |- 1146 2264 1886|-22.81 2758 3.187 -46.89{-2247 176

2.36 Terms
Ist & 2nd Order | 11620(- 1114/- 3583 3349 -381.2/ -3.067] 501.2| -6620 .25
3.47 Terms 1st, 2nd|
& Selected 3rd | 10681j- 2705/- 3578 13.10] 10.33/-994.7] 1462 36544 .21
4.57 Terms lst, 2nd
& Selected 3rd | 9458 8395/ -2893/-208.1/-1985/-334.1] 0 1951 16
5.No.1 wo mm Terms| — 1146] 2248 1884/-2209 2783 2.623|-46.80 0 1.76
6.No. 2 wo mim Terms| 11689|- 2253| - 3820/ 2233 -2750/-51.26/ 609.2] 0 43
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In the case of polynomials 2, 3, 4, and 6, the coefficients
of the higher order terms are not shown. A general tendency
which is displayed is that, for a given polynomial, the RMS
error decreases as injection altitude is increased. This
tendency 18 probably a result of the fact that the volume

of initial conditions 1is decreased for increased injection
altitude. This phenomenon results from the manner in which
the limiting trajectories were generated, and 1s a physically
realistic situation. '

Trajectory simulations were made on the limits of the
volume fitted. The results of these similations are pre-
sented in Tables 4 through 6.

TABLE 4

SATURN C-1: 100 N.M. RANGE-INDEPENDENT CIRCULAR MISSION

Number of Terms Used|Motors Wt (Ib) AW A Ay
for Steering Function|ln Booster| C of V [y Run | (Ib) | (deg) | (km)
1. 8 Terms .
1st Order 8/1 35393 | 35558 165 39 49
: V1 35926 | 35822 | -—104 =67 =31
2. 36 Terms
1st & 2nd Order 1 35393 | 35438 45 10 2
: /4] 35926 | 35932 6 01 -3
3. 47 Terms Ist, 2nd &
Selected 3rd Order| &7 35393 | 35412 18 04 A
/41 35926 | 35921 -5 0 A
§. 57 Terms 1st, 2nd &
Selected 3rd Order| 8/7 35393 | 35418 25 06 -2
V1 35926 | 35936 10 05 -1

5. No. 1 without
mn/m Terms 8/1 35393 | 35564 | -29 A0 5.1
/1 35926 | 35816 | ~110 -68 -34

6. No. 2 without
m/m Terms 1 35393 | 35428 35 08 S5
V1 35926 | 35926 0 =02 -3




TABIE 5
SATURN C-1: 200 N.M. RANGE-INDEPENDENT CIRCULAR MISSION
Number of Terms Used | Motors Wt (Ib) AW [ Ay
for Steering Function [In Booster| C of V |y Run (th) (deg) {km)
1. 8 Terms
1st Order V1 32812 | 32843 31 .47 4.6
1/1 32756 | 32817 61 - 69 -2.8
2. 36 Terms
1st & 2nd Order /1 32812 | 32815 3 .03 4
Vi 32756 ] 32753 -3 0 2
3. 47 Terms Ist, 2nd &
Selected 3rd Order 1 32812 ] 32812 0 .01 4
/1 32756 32149 -1 - 01 A4
4. 57 Terms 1st, 2nd &
Selected 3rd Order 1 32812} 32816 4 .02 -1
/1 32756 ] 32756 0 .02 0
5. No. 1 without
m/m Terms 81 32812| 32845 33 .48 4.6
V1 32756 32814 58 - 69 ~2.6
6. No. 2 without
m/m Terms 8/1 328121 328117 5 .04 A
1/1 327561 321751 1 -.03 0
TABLE 6

SATURN C-1: 300 N.M. RANGE-INDEPENDENT CIRCULAR MISSION

Number of Terms UsedMotors Wt (Ib) THEE Ay
for Steering Function Jn Booster[C of V| X Run| (Ib) (deg) (km)
1. 8 Terms
1st Order 8/1 29486 | 29335 | -151 62 49
1/1 28567 | 28803 | 236 | -80 -26
2. 36 Terms
1st & 2nd Order 8/1 29486 | 29481 -5 01 0.3
/1 28567 | 28558 -9 01 03
3. 47 Terms 1st,2ndy
Selected 3rd Order| 8/7 29486 | 29487 1| -0l 0.0
1/1 28567 | 28569 2 -02 01
4. 57 Terms Ist,2nd &
Selected 3rd Order] 8/7 29486 | 294381 -5 02 0.2
/1 28567 | 28566 -1 090 0.0
5. No. 1 without
m/m Terms 8/1 29486 | 29335 | -151 62 49
1/1 28567 | 28801 ] 234 -30 -26
6. No. 2 without
m/m Terms 8/1 29486 | 29479 -1 03 0.3
1/1 28567 | 26582 -5 00 0.2
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The deviations listed were obtained by comparison of the
nominal injection conditions (altitude = 100, 200, and

300 nautical miles; local circular velocity; 90 degree
path angle) with the trajectory simulations. Cutoff was
assumed to be gilven at the nominal velocity level, so that
no velocity error 1s present in any of the cases. All
hardware was assumed to function perfectly. A comparison
is made of the cutoff weight obtained by calculus of
variations optimized trajectories from the same first stage
end points and the trajectory simulations using polynomial
steering functions. In some cases 1t is observed that the
polynomial program delivered a higher weight to the
reference velocity level than the calculus of variations
trajectory. This galn is the result of the deviation in
the other end conditions, due to the lnaccuracies in the
steering function. The calculus of variations program
will always deliver a higher paylocad if identical end
conditions are achieved.

C. CASE II

The second migssion investigated was a reentry flight.
This mission was assumed to be independent of range in the
same sense defined previously. Constraints were imposed
on the first stage flight in the same manner as discussed
before; that is, the tilt program was shaped for seven
engine performance. The S-IV (upper stage) cutoff point
was constrained by requiring that cutoff occur at an
altitude of 120 km and a path angle of 94 degrees. 1In
order to assure the maximum reentry velocity achievable
by the stage, fuel depletion was assumed in every case.

Tge results obtained from this study are shown in Tables
7 and 3.

In Table 7 it will be observed that the RMS error goes
up to 0.45 degrees for the 57 term polynomial as compared
with 0.32 degrees for the 47 term polynomial and the fact
that the selection of terms in the polynomial can be more
important than the number of terms. It also shows that a
given choice of terms for the polynomial may be good for
one mission and not good for another. The 57 term polynomial
was selected on the basis of its performance for the orbital
missions.
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TABLE 7
SATURN C-1: REENTRY TEST FLIGHT
Coefficients of
First Order
of Terme\_ Terms| 2 3 q a a ag a a RMS
Used feor Constant| x y X y F/m t mm | Error
Steering Function
1.8 Terms Ist Order| -1107| 305.6 201.3]-46.67] 23.23| 4.063|-5351/-6413] 142
2.36 Terms
1st & 2nd Order 3046/ -2398) -9171-781.3{-60.60 2231 601.1-13005 38
3.47 Terms 1st, 2nd
& Selected 3rd |-656.2( - 1765/ -4598/~ 7058 63.60| 628.3 - 7547-24483 32
4.57 Terms Ist, 2nd|
& Selected 3rd |-21893/- 3295 6390|-422.8/-31.95 4063 0 -[-23184 45
5.No. 1 wo mim Terms|— 1139 3058 2055(-42.72| 2361 2.235/-5608 0 145
6.N0.2 wh i Terms| - 9210 6164 3049 -2731- 1154/ 11091982 0 51
TABLE 8
SATURN C-1: REENTRY TEST FLIGHT
Number of Terms Used| Motors A Alt Y] 19
for Steering Function|In Booster (km) (m/sec) (deg)
1. 8 Terms
Ist Order 8/1 446 6.74 13
/1 -156 113 -.36
2. 36 Terms
1st & 2nd Order 8/1 - 22 582 01
/1 Bt 601 01
3. 47 Terms 1st, 2nd &
Selected 3rd Order 8/1 - 65 534 [}
/4] - 81 6.2 00
4. 57 Terms 1Ist, 2nd &
Selected 3rd Order 1 - 136 678 03
Vi 1.08 300 04
5. No. 1 without
m/m Terms /1 441 156 16
174 -121 642 - 36
6. No. 2 without
m/m Terms 8/1 - 10 521 - 0t
1 - 11 561 - 04
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SECTION IV, CONCLUSIONS

The results presented demonstrate the flexibility of
the adaptive guidance mode. By using a sufficient number
of terms in the steering polynomial, any reasonable accuracy
of injection may be obtained, as required by the mission
criteria. Conversely, if the accuracy which 1s desired for
a given mission is not great, a polynomial having only a
small number of terms can be developed which will produce
injection within the tolerances given. In both cases the
accuracy of the theoretical guidance mode may be clearly
separated from hardware considerations, both in terms of
loss of optimization and inaccuracy of mission fulfillment.
Thus, the effect of any limitations or approximations can
be gtudied.

Later publications will include the results of studies
using more refined, polynomials and techniques. Also more
advanced and complex missions, such as orbital rendezvous,
will be analyzed.
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COORDINATION OF IN-HOUSE AND CONTRACTOR EFFORTS
IN THE DEVELOPMENT OF
GUIDANCE AND SPACE FLIGHT THEORY AND TECHNIQUES

by
David Schmieder

SECTION I. INTRODUCTION

We may summarize the work of Future Projects Branch by
noting, (1) the limitations on the procedures now in common
use, %2) what work 1s now being done and is planned to be
done to remove such limitations, and (3) how it is planned
to accomplish this through the coordination of in-house and
contractor activities under the contract, "Guidance and
Space Flight Theory." '

SECTION II. DISCUSSIONS
A. LIMITATIONS ON PRESENT PROCEDURES

Perhaps the most frequently solved problem is the one-
point boundary value problem. Performance surveys, control
Studies, and guidance error analyses require the solution
of this problem; and it is also used in the iterative
solution of the two-point boundary value problem. These
solutions usually involve stepwise integration procedures
which are limited in accuracy by truncation or round-off
errors and in economy of operation by over pessimistic
error approximations.

The solution of the two-point boundary value problems
encountered in our work 1is limited almost entirely to the
iterative methods using one-point solutions. Thus, in
addition to having the limitations mentioned for the one-
point problem, we have the difficulties associated with
numerically finding the inverse of a function at an implicitly
defined point. Also, 1t is difficult to know definitely when
all solutions of interest have been found.

The computer time associated with such solutions is
important for economy reasons in prelimlnary design work on
the ground. The importanceof time as a limitation of the
method increases when the onboard computations for the
adaptive guidance mode are considered.
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The space trajectory computation procedures now in
general use are "special perturbation" solutions and thus
are expressed as one-point boundary value problems. Thus,
within a certailn accuracy, the space trajectory resulting
from a given cutoff polnt can be computed, and the cutoff
points necessary to achieve desired space trajectoriles can
be iterated for; but the mission criteria formulation needed
for the adaptive guidance mode is not supplied.

Since the methods mentioned so far are mostly numerical,
they also carry the disadvantage of requiring a lot of
experience by the user in order to decrease the man-hour
time for solutions. This makes it difficult to obtaln fast
results that are sometimes needed as, for example, when
changes in hardware characteristics are being considered.

In addition to these limitations, 1t has been found to
be more effective to write "decks" for machine computation
specifically for problems as needed for the development of
tools and for the application to various missions as they
come down from adminigtration, usually with an associlated
time schedule. Thus, we are always limited to the state of
approximation to the physical model that exists in decks
presently checked out. In order to push back these limita-
tions as needed, the following projects are being carried
on in-house, '

B, IN-HOUSE PROJECTS

Special Perturbation techniques for improving the one-
point boundary value solution for space trajectories have
been under develcpment for some time and this work will
continue. Also to be continued are: studies toward a non-
iterative type solution to the two-point boundary value prob-
lem that results from the classical calculus of variations;
the functional approximation of tabulated multivariable
functions, as used to represent a volume of two-point
boundary value solutions derived iteratively; and a general
perturbation solution to space trajectories falling under
the restricted three-body problem. The latter is belng done
with the cooperation of Dr. Schulz-Arenstorff of Computation
Division.

Our work to date with the calculus of variations has
been based mainly on the Euler-Lagrange nhecessary conditions.
Investigations are being started toward an examination and
application of sufficiency conditions found in the theory.
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The number of iterative solutions of two-point boundary
value problems to be made has been increasing continually.
Thus, a study has been initiated to obtain quicker, better
controlled, and more universally applicable routines for
iterating solutions to this problem.

Existing calculus of variations decks are being extended
to include some higher ordered perturbation terms, such as
the gravity associated with an oblate earth, and atmosphere.
Also, experimental calculus of variations decks are being
set up for use in reentry studies.

These in-house studies are complemented by many studies
which have been contracted out to industrial and university
groups.

C. OUT-OF-HOUSE PROJECTS

In the calculus of variations, Auburn University has
written a three dimensional deck and, together with General
Electric of Philadelphia, willl add further forces and study
the optimization of dive trajectories with various types of
control as applicable to the present Apollo concept.
Vanderbilt University is beginning a theoretical study of
transversality conditions for discontinuous ares and the
sufficiency conditions of the classical approach. Grumman
is developing a low-thrust deck in two and three dimensions
for planetary and near earth orbit transfer. The gradient
approach to the variational calculus is applied. It may be
noted that although some problems of the iterative two-point
boundary problem are eased by that method, the disadvantage
of a necessary experience factor is still present.

The general perturbation solution to the three-body
problem, for application to lunar flights, is being attacked
from different points of view by General Electric and the
University of Kentucky.

The approximation of a tabulated function of several
variables by means of a formal function easily evaluated
on an onboard computer is receiving attention by Chrysler
Corporation Missile Division, the University of North
Carolina, and Northeastern Louisiana State College. North
Carolina is also developing an automatic function differen-
tiator for possible use in all of the problems.
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Several studies are hoped to be initiated soon in
connection with orbital rendezvous. Survey-type studies
of orbital transfers with high thrust engines are planned
for Grumman and United Aircraft. United Alrcraft, General
Electric, and Raytheon would study the return from orbital
launch complex and Bendix would study the docking maneuvers.
These surveys would be designed to show the effects of
hardware restrictions, over-all capablilities, and the over-
all optimum solutions.

It is planned for Grumman to develop steering equations
for a lunar mission, and Chrysler for an earth satellite
mission.

We do not have the manpower to attack all of these
problems in-house, 80 that for timely solutions and a
healthy relationship with a representation of the industrial
and university capacity of the nation, we feel the contractual
approach to these problems will prove to be a useful one.

D. COORDINATION OF IN-HOUSE AND OUT-OF-HOUSE ACTIVITIES

In order to coordinate the in-house and out-of-house
activities, bi-monthly meetings have been set up as informa-
tion exchange points. At these meetings both problems and
solutions are presented for comment and criticism by all
members. Smaller groups meet for more detailed exchange of
information in the various speclal fields.

This arrangement produces an in-house load of keeping
control over the contractors, thelr production and plans
for future work. To meet this problem, certain members of
Future Projects Branch have been designated as specialists
in a given field. These specialists keep up with proposals
in the field along with members of the contract group. The
present organization is as given in Figure 1.

We rely on Dr., Sperling for all Speclal Perturbation
Theory, decks, and advice. Mr. W. B. Tucker, with one
mathematician, works with him. Dr. Schulz-Arenstorff of
Computation Division 18 also relied upon for advice.

We have encouraged direct exchange of views and results
between the various contractors. Our only requirement has
been that we be informed by copy of the letters and informa-
tion transmitted.
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CONTRACT SUPERVISION
GUIDANCE AND SPACE FLIGHT THEORY
(OVERALL TECHNICAL SUPERVISOR, W.E. MINER)

FIELD CONTRACTORS | FUTURE PROJECTS
SPECIALIST
Large Computer ’
Exploitation €, UNC, NLS, (RTN) N. Braud
Celestial Mechanics
{Gemeral Perturbations) UKY, GE M. Davidson
Calculus of Variations
Theory and Implications VAN, AUB, NV, (MKW) R. Silber
Survey Studies BX, 6Q, UR B. Tucker
Reentry and Direct
Calculus of Variations 6Q, GE, RTN ). Winch
FIGURE 1

(See page 83 for definition of symbols)

New unsolicited bids concerning this contract are being
received very frequently now, and create quite a job of
evaluation. However, it is attempted to keep the door open
for all proposals and criticisms by the contractors and new
bidders. Over-all action may then be based on the criticisms
of the contractors and the advice of the specialists.
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SYMBOLS
MSFC Marshall Space Flight Center
UKY University of Kentucky
UNC University of North Caroclina
AUB Auburn University
VAN Vanderbilt University
NLS Northeastern Louislana State College
GQ Grumman Aircraft Engineering Corporation
Cc Chrysler Corporation
GE General Electric Corporation
RA Republic Aviation Corporétion
MHW Minneapolis-Honeywell Regulator Company
RTN Raytheon Manufacturing Company
UR United Aircraft Corporation
BX Bendix Aviation Corporation

NV North American Aviation, Inec.
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